Home   Services

Carbon monolith scaffolding for high volumetric capacity silicon Li-ion battery anodes
TIME:2017-7-17 10:26:00

A nanoporous carbon monolith structure has been developed for use as a scaffold for silicon anodes for lithium batteries. This scaffold was fabricated by coating vertically aligned carbon nanotubes in a highly conformal coating of nanocrystalline carbon, applied via atmospheric pressure chemical vapor deposition. The coating increases the mechanical stability of the nanotube structure, which provides electrically conductive pathways through the anode. Silicon anodes were fabricated with the monoliths by low pressure chemical vapor infiltration of silicon. This platform allows the carbon and silicon volume fractions to be independently varied in the anode. Anodes with a low silicon content (less than 5% by volume) showed high stability in cycling against lithium with a capacity retention of 89.7% between cycles 2 and 185. Anodes with a high silicon content (∼25% by volume) showed poor capacity retention when the carbon content was low (<40% by volume), and transmission electron microscopy analysis indicated that the anodes failed due to the destruction of the nanocrystalline carbon coating during cycling. However, by increasing the carbon content to ∼60% volume percent in the monolith, capacity retention was substantially stabilized even for anodes with very high silicon loadings. These stabilized electrodes exhibited volumetric capacities as high as ∼1000 mA h/ml and retained over 725 mA h/ml by cycle 100.

 Contact Us       Links       Copyright explanation   
Add£º75-1 Fan Yu Rd.Shanghai China 200052 Email: Webmaster@chinesevacuum.com
Hot: 0086-21-62595067 Tel: 0086-21-62595268 Fax: 0086-21-52906507
QQ Group 1: 286813114, Group 2: 162715660, Group 3: 256587195

Website Chinesevacuum All Rights Reserved.